Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

K₉CeP₄S₁₆, a new thiophosphate of cerium with discrete [Ce(PS₄)₄]⁹ anions

Gilles Gauthier, Stephane Jobic, Veronique Danaire, Raymond Brec and Michel Evain*

Institut des Matériaux Jean Rouxel, Laboratoire de Chimie des Solides, 2 Rue de la Houssinière, BP 32229, 44322 Nantes CEDEX 3, France Correspondence e-mail: evain@cnrs-imn.fr

Received 9 February 2000 Accepted 2 March 2000

Data validation number: IUC0000059

The structure of nonapotassium cerium tetraphosphorus hexadecasulfide, a zero-dimensional material isostructural with Rb₉CeP₄Se₁₆, is reported.

Comment

In the quest for new Ce-containing materials with interesting chromatic properties, the K/Ce/P/S system has been explored. Hence, the title compound, $K_9^ICe^{III}P_4^VS_{16}^{-II}$, (I), has been synthesized and structurally characterized. This yellow solid, isostructural with Rb₉CeP₄Se₁₆ (Chondroudis & Kanatzidis, 2000), contains discrete [Ce(PS₄)₄]⁹⁻ anions built upon [CeS₈] triangular dodecahedral polyhedra sharing distinct edges with four [PS₄] tetrahedra. The resulting arrangement of this metal complex exhibits a D_{2d} local symmetry. As cerium(III) and potassium(I) have similar ionic radii and since Ce and K5 sites are identical, a small substitution of Ce by K and, complementarily, of K by Ce is observed. All distances and angles are as expected, except for a small shrinking of the K5···S average distance due to the Ce partial substitution.

$$g_{K^{+}} \begin{bmatrix} s = P_{-S} & s & s \\ s = P_{-S} & s & s \\ s = P_{-S} & s & s \end{bmatrix}^{9}$$

Experimental

 Ce_2S_3 (0.1795 g, 0.5 mmol), P (0.0591 g, 1.9 mmol), K_2S (0.0932 g, 2.4 mmol) and S (0.1682 g, 5.2 mmol) were thoroughly mixed and sealed under vacuum in a silica tube. The reaction mixture was heated to 1073 K at a rate of 4 K h⁻¹, maintained at this temperature for 7 d and then cooled to room temperature at a rate of 4 K h⁻¹. The obtained yellow plate-like crystals are air-sensitive and decompose in presence of water. A single crystal was sealed in a quartz capillary in an argon dry box.

Crystal data

$K_9CeP_4S_{16}$	$D_x = 2.389 \text{ Mg m}^{-3}$
$M_r = 1128.86$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2000
a = 20.242 (3) Å	reflections
b = 9.788 (1) Å	$\theta = 2-24^{\circ}$
c = 17.524(2) Å	$\mu = 3.911 \text{ mm}^{-1}$
$\beta = 115.36 \ (1)^{\circ}$	T = 300 K
$V = 3137.4 (8) \text{ Å}^3$	Block, yellow
Z = 4	$0.20 \times 0.18 \times 0.07 \text{ mm}$

Data collection

Stoe IPDS diffractometer	4324 reflections with $F^2 > 2\sigma(F^2)$
ω scans	$R_{\rm int} = 0.036$
Absorption correction: analytical	$\theta_{\rm max} = 27.89^{\circ}$
(Becker & Coppens, 1974)	$h = -26 \rightarrow 26$
$T_{\min} = 0.584, \ T_{\max} = 0.865$	$k = -12 \rightarrow 12$
22 263 measured reflections	$l = -22 \rightarrow 22$
5481 independent reflections	

Refinement

Refinement on F^2	139 parameters
R(F) = 0.026	$w = 1/(\sigma^2 I + 0.001024 I^2)$
$wR(F^2) = 0.061$	$(\Delta/\sigma)_{\text{max}} = 0.005$
S = 1.12	$\Delta \rho_{\text{max}} = 1.15 \text{ e Å}^{-3}$
5481 reflections	$\Delta \rho_{\min} = -0.98 \text{ e Å}^{-3}$

The structure is twinned by merohedry (twofold axis along c), twinning domain ratio refined to 0.5175 (6) and 0.4825.

Data collection: *IPDS Software* (Stoe & Cie, 1996); cell refinement: *IPDS Software*; data reduction: *JANA*98 (Petricek & Dusek, 1998); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1997); program(s) used to refine structure: *JANA*98; software used to prepare material for publication: *JANA*98.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.

Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.

Chondroudis, K. & Kanatzidis, M. (2000). Private communication.

Petricek, V. & Dusek, M. (1998). *JANA* 98. Institute of Physics, Prague, Czech Republic.

Stoe & Cie (1996). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.